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wind loads (such as loads from galloping, Aeolian vibration 
and wake-induced oscillation), ice loads (gravity and ice mass 
inertia) and other loads such as impact from a flying object 
and ice shedding in adjacent cables. The latter category 
involves the atmospheric conditions during ice accumulation, 
air temperature during ice shedding, load rate, and ice 
behaviour in crack nucleation and propagation. 

Galloping of suspended cables has been studied by many 
researchers [1, 2, 4, 6]. Irvine and Caughey (1974) developed 
a linear theory for free vibration of a uniformly suspended 
cable in which both in-plane and out-of-plane motions were 
considered. The results of this theory have been used by many 
researchers to model galloping behaviour. Yu et al (1993) 
developed a three-degree-of-freedom model to describe and 
predict different galloping behaviours of a single iced 
electrical transmission line. Ohkuma et al (1998) focused on 
the effects of wind turbulence on galloping, and tried to 
explore the galloping behaviour of a four-bundle overhead 
transmission line in gusty winds. Luongo and Piccardo (1998) 
derived a two-degree-of-freedom model to examine the 
aeroelastic behaviour of a flexible elastic suspended cable 
driven by the mean wind speed blowing perpendicularly to the 
plane of the cable. Abdel-Rohman and Spencer (2004) used 
the results of Luongo and Piccardo (1998) to study the along-
wind and across-wind response motion of a suspended cable. 
They also investigated the effect of a vertical viscous damper 
at a certain location of the cable.  

 Only a few of the vast number of publications concerning 
galloping are mentioned in the above paragraph. To the best of 
our knowledge, however, none of them discusses in detail the 
stresses which develop in the ice accretion during the vibration. 
In this research work, an attempt was made to estimate these 
stresses and their variations with respect to load variations 
during galloping. The calculation of cable galloping motion, 
developed by Abdel-Rohman and Spencer (2004) and Luongo 
and Piccardo (1998), was applied to a cable covered with 
atmospheric ice. The results of this calculation are the 
displacements of each point along the cable in vertical and 
transverse directions, as well as the aerodynamic forces and 
other loads on the ice. These results are used in a new model 
constructed using the ABAQUS finite element software. This 
model provides an estimation of the stress level in different 
parts of atmospheric ice on the cable and its variation through 
a galloping cycle. 

II. CALCULATION OF LOADS IN GALLOPING 



Galloping of power transmission lines is one of the most 
important phenomena inducing stresses in the accreted 
atmospheric ice. The significant deformation of the iced cable 
during this high-amplitude vibration induces stresses in the 
atmospheric ice. This deformation can be estimated by 
modeling the cable motion in galloping and obtaining the 
position of each point along the cable. Therefore, the equation 
of motion describing cable galloping will be considered. For a 
more accurate estimation, the following forces and stresses 
should be applied on atmospheric ice: aerodynamic forces, 
additional tension in cable due to vibration, ice mass inertia 
and torque due to cable spring back. 

Owing to the complexity of this problem, we have to 
simplify some sophisticated aspects of natural conditions, as 
follows: 
a) Normally, ice shapes on power transmission lines are not 
exactly cylindrical and uniform; it is more symmetrical in the 
middle of the span than in other parts. Nevertheless, it is 
assumed that ice shape is cylindrical and uniform  all along the 
cable. However, in the calculation of wind loads on the cable, 
the functions of wind force obtained from wind tunnel tests for 
asymmetrically iced cables are used. 
b) Movements and vibrations of towers during galloping are 
negligible. 
c) Wind velocity does not change during galloping and it is 
uniform all along the cable. 

A. Equation of cable motion 
The basic equations of motion of a suspended cable are the 

following [1,3,4] 
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in which s is the spatial coordinate along the curved length of 
the cable; t is the time; x is the coordinate along the cable 
span; y(s) is the cable static profile; Dx(s, t), Dy(s, t) and Dz(s, 
t) are, respectively, the displacement in the horizontal, vertical 
and transverse directions (Fig.1), m is the cable mass per unit 
length, including ice mass, c is the damping coefficient per 
unit length, T0 is the static tension; Ta is the additional 
dynamic tension in the cable; F1(s, t), and F2(s, t) are, 
respectively, the external loading per unit length in the vertical 
and transverse directions.  

 
When additional dynamic tension is applied to the cable with 
accreted ice, this tension is divided between the cable and ice 
according to the following relations: 

)/( iiccccaac EAEAEATT +=                                            (4) 

)/( iicciiaai EAEAEATT +=                                          (5) 

 where Ei and Ec are Young’s modulus of atmospheric ice and 
cable, and Ai  and Ac are cross section areas of the ice and cable, 
respectively. 

Since the ratio of sag to span in power transmission lines is 
less than 1:8 and horizontal loads are negligible in our model, 
we can consider the horizontal displacement Dx to be equal to 
zero [1,3]. The solution, Dy and Dz, of the equations of motion 
can be obtained by separation of variables: 

( ) ( ) ( )tWstsD y 1, ϕ=                                   (6)                     

( ) ( ) ( )tVstsD z 2, ϕ=                                          (7) 

where ( )s1ϕ  and ( )s2ϕ  are the mode shapes in the transverse 
and vertical directions respectively, and can be determined as 
[1]: 

( ) )/sin(1 lsnAs n πϕ =           n=1, 2, 3…                      (8) 

( ) ( )[ ])/cos()/sin(5.0tan102 lslsks πωπωωπϕ −−=          (9) 

where k0 is a constant chosen to make , and  

12

1)2/(2 =lϕ
/ωωω = . 1ω  and 2ω , the natural frequencies in the 

transverse and vertical directions, can be obtained as follows:  
lmHn //1 πω =       n=1, 2, 3……                          (10) 

mHq /2 =ω                                                        (11) 

with H denoting the horizontal component of cable tension 
which can be obtained by solving  (12) numerically: 

mgHmglHd /]1)2/[cosh( −=                       (12) 

where d is the sag of the cable and q can be calculated from 
the following equation [3]: 

( ) ( ) ( )( 32 2//42/2/tan qlqlql λ−= )                     (13) 

and where parameter  takes the form: 2λ
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In order to decrease the number of equations of motion and 

the complexity of analysis, this problem is solved for first 
mode shape only (n=1). After simplifying (2) and (3), 
substituting (6) - (15) into them, and applying Galerkin’s 
method, one obtains the equation of motion of the cable as 
follows [1]:  
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where 1ξ  and 2ξ  are damping ratios in transverse and vertical 
directions, whereas F1(t) and F2(t) are determined as below  
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Fig 1. Cable displacement in horizontal, Dx, vertical, 
Dy, and transverse, Dz, directions 



The coefficients ni, di and ei are defined in Kermani (2006). 
Finally, the equations of motion of a galloping cable can 

be written by combining (16) and (17) with (18) and (19), 
yielding: 
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B. Loads and stresses in atmospheric ice  due to cable bending 
The most important type of stress involved in ice shedding 

from power transmission lines during galloping is the bending 
stress. When galloping causes the cable to bend, the 
atmospheric ice on the cable resists against this deformation. 
However, if the force overcomes the resistance of the 
atmospheric ice, the ice breaks and may shed.  The position of 
each point along the cable during galloping (results of the 
calculations presented in Section 2.1) will be used in the 
ABAQUS model to determine the stresses developing in  
atmospheric ice.  

• Aerodynamic forces 
As mentioned above, aerodynamic forces cause cable 

galloping, and the ensuing movement can produce bending 
moment and additional tension in the cable. However, these 
forces apply some loads directly on the accreted ice too. 
Equations (18) and (19) express the loads of the aerodynamic 
force per unit length in the transverse and vertical directions, 
respectively. To take into account the effect of these forces on 
a piece of atmospheric ice in the middle of a span, it is 
sufficient to apply them in the ABAQUS model as a 
distributed force on the ice (see Fig. 2). 

• Torsional loads 
Power transmission cables are very flexible and tend to 

rotate when ice builds up asymmetrically on their surface. Due 
to such a rotation, the ice mass tends to be evenly distributed 
on the surface of the cable. This can explain why the ice shape 
observed on transmission lines is predominantly circular. 
During ice accretion, when the ice on the cable is not 
symmetric, two factors can apply torsional load on the cable, 
ice weight and aerodynamic force due to wind speed. 
However, when ice accumulates on the cable and takes a 
cylindrical shape, the torsional load due to wind becomes 
negligible. The rotational angle of the iced cable depends upon 
the torsional rigidity of the cable and the amount of ice 
accreted on it.  

The relationship between the rotation of the cable at mid-
span around its centerline,θ , and the torque at the suspension 
points, TA, due to cable spring back can be written as follows : 

θ=GJLTA 2/                                                  (22)  

where GJ is torsional rigidity of cable, L is cable length, and 
constant ice thickness is assumed along the entire span. Once 
θ  is known, the spring-back torque ,Tc, which is applied by 

the cable to the end point of a piece of ice located in the 
middle of the span, can be determined as follows: 

2
1 /2 LGJLTC θ=                                                      (23) 

where L1 is the length of piece of cable (torque in Fig. 2). 
Since a short piece of the cable-ice composition in the middle 
of the span is analyzed, i.e. , the torque, TLL <<1 C, is 
significantly smaller than the other loads discussed above.  

 

 

• Additional tension in the cable and the ice 
As mentioned above, cable motion during galloping 

induces additional tension in the cable and the atmospheric ice. 
The stresses due to these additional tensions are calculated 
using the following formulae: 

 
dsdssdEcc /)( −′=σ                           (24) 

dsdssdEii /)( −′=σ                              (25) 

where sd ′ is the deformed cable segment. These terms were 
considered in the model developed in ABAQUS (additional 
tensions in Fig. 2). 

• Load due to ice mass inertia 
The ice load is induced by acceleration due to cable motion 

or gravity force. In this model the effect of this load is 
calculated using the ABAQUS software.  

C.  Calculation of forces and displacements 
In order to obtain the displacement of each point of cable 

during galloping (as mentioned in Section 2.1), the constants 
ni, di, and ei in (20) and (21) should be determined first. These 
constants together with the initial cable tension, T0, and the 
natural frequencies in transverse and vertical directions, 1ω  
and 2ω , are calculated by a code written in MAPLE. The 
output data of this code are scalars corresponding to T0, 1ω  
and 

2ω , as well as three matrices providing the constants ni 
(1×7), di (1×15) and ei (1×15). 

The cable motion during galloping is simulated by a 
program developed in MATLAB. All the results provided by 
the MAPLE code, the cable and ice characteristics, the wind 
velocity, U0, and the damping ratios in the vertical and 
transverse directions,  and 1ξ 2ξ  are defined as input data for 
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Fig 2. Loads and movement of a piece of cable on corresponding curves 



the MATLAB implementation. This program solves (20) and 
(21) numerically and determines the displacement of the two 
ends of a length of cable with ice in the middle of the span. 
Furthermore, it computes the aerodynamic forces on the ice, 
the torque applied to the ice due to cable spring back, and the 
additional tension in the cable and the ice. All of these values 
are tabulated as time functions, and then are used as loads and 
displacement in the ABAQUS model described in the next 
section. 

III. MODELING STRESS VARIATION DURING 
GALLOPING  

The simulation of cable motion and the load calculation 
provide all the parameters needed to determine the stress in 
the ice and its variation during galloping. A model consisting 
of a length of cable with uniform cylindrical ice accretion is 
designed with ABAQUS, which then computes the stress 
developing in the ice through one or more cycles of galloping. 
The curves representing cable motion at each end of the 
modeled piece, as sketched in Fig. 2, are obtained as output 
data of the MATLAB program. The additional cable tension 
and aerodynamic forces are also added as input data, while the 
effect of ice load and inertia is calculated by ABAQUS. Fig. 2 
shows schematically the movement of a piece of cable, as well 
as the forces and the torque applied on the accreted ice. 

The analysis was carried out in the Dynamic Explicit 
condition mode with ABAQUS, which uses a consistent, 
large-deformation theory and where the model can undergo 
large rotations and large deformation. The element type for 
cable and ice is C3D8R. This is a three-dimensional element 
with 8 nodes and suitable for continuum stress/displacement 
analysis with reduced integration. The variations of transverse 
and vertical displacements, aerodynamic forces, additional 
tension in the cable and the ice were tabulated in 8 tables. 
Each table has two columns, the first one containing the time 
data, and the other one listing the above-mentioned parameters 
at each instance. The total time of analysis is 3.33 s. In order 
to have more accurate estimation, both ends of the cable-ice 
piece at the beginning of the analysis were set in the positions 
which represent the initial shape of the ice and cable before 
any deformation. The ice was assumed to adhere strongly to 
the cable surface without sliding and separation.  

IV. RESULTS AND DISCUSSION 
The preliminary calculations with MAPLE, the galloping 

simulation with MATLAB and the stress analysis in 
ABAQUS were applied to a typical example. Table 1 shows 
the characteristics of the span, cable and ice considered in this 
example. 

Preliminary calculations were first carried out with the data 
presented in Table 1, and then the galloping of the cable-ice 
composition was simulated. The cable displacement at mid-
span in the transverse and vertical directions is shown in Fig. 3. 
A full cycle of galloping lasts 3.33 s, and it is clear that the 
amplitude of the vertical motion is significantly greater than 
that of the transverse motion. The trajectory of the mid-point 
of the cable is shown in Fig. 4. The results of wind load and 
stress calculations are presented in Figs. 5 and 6. Fig. 5 shows 
the variations of distributed wind forces in vertical and 

transverse directions during a full cycle of vibration, whereas 
Fig. 6 shows the stresses due to additional tension in the cable 
and accreted ice.  

 
Table1. Characteristics of the span, cable and ice 

Parameter Value Unit 
Cable type BERSIMIS ACSR 42/7 --- 
Cable diameter 35.1 mm 
Young’s modulus of cable 62 GPa 
Mass per unit length of cable 2.185 kg/m 
Cable torsional rigidity 351 N.m/Rad 
Cable cross-section area 725.2 mm2

Span length 300 m 
Cable sag 8.04 m 
Ice type Hard rime and glaze --- 
Ice thickness on cable 25 mm 
Density of ice 900 Kg/m3

Young’s modulus of ice 9 GPa 
Wind velocity 6 m/s 
Rotation angle due to ice 405 o Degree 
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ig. 4. The trajectory of mid-point of cable during galloping. 
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alloping simulation  
The data presented in Table 1 and the results of 
ulations discussed in Section 4.1 were applied as input for 
stress analysis on a piece of cable-ice composition in the 
dle of the span. The length of this piece was set at 10 cm. 
Stresses in several elements modeling the ice were 
ulated during one cycle of galloping and the results for 
ents in various positions are shown in Figs. 7 and 8. Fig. 

lustrates the positions of these elements in the middle of 
10-cm piece of ice cover. As shown in Figs. 8 and 9, the 
 Mises stresses reach their maximum values at  1.27 s and 
s, when the mid-point of the cable is at the highest and 
est position of its trajectory, respectively. Numerically, 
e maximum values are 7.33 MPa and 5.61 MPa for the 
ents in the external layer, and 4.99 MPa and 3.59 MPa for 



the element in the internal layer. According to Fig. 4, the 
vertical displacement of the cable reaches its limits twice in 
one cycle: first at 1.27 s when the mid-point of the cable is at 
the highest position of its trajectory, and then at 2.9 s when 
this point reaches the lowest position. The stress is greater in 
the first case, because the transverse position of the mid-point 
of the cable is the farthest from its location in static 
equilibrium at 1.27 s, while it is the nearest at 2.9 s. 
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our case. Thus, since the von Mises stress is significantly 
greater for some ice elements than the bending strength of ice, 
our model predicts ice fracture from the part of the cable under 
examination. Ice failure is initiated at the top and bottom sides 
of the accreted ice sheath, because stresses are higher at these 
locations, whereas stress level does not exceed the bending 
strength for the lateral elements on the left and right sides of 
the cable. A section of iced cable with stress distribution is 
illustrated in Fig.10.  

 

 
Figs. 11 and 12 show normal stresses parallel to cable axis 

for the same elements as in Figs. 7 and 8, respectively. When 
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 7. Stresses in 4 elements in the external layer of atmospheric ice.
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ig. 10. Stress distribution in cable and accreted ice. 
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. Stresses in 4 elements in the internal layer of accreted ice. 
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and vertical diameters of the iced cable in the middle of the 
10-cm piece. As expected, stress in the internal layers of the 
ice (and cable) is less than that of the external layers. 

 

 

 

V. CONCLUSION  
This paper presents a finite element model for estimating 

galloping induces stress in the ice cover of an overhead cable. 
In order to determine the displacement and load data which 
serve as input for this model, galloping of an iced cable was 
simulated. Equations of cable motion, derived for galloping in 
former publications, were applied to an iced cable, and solved 
by a MATLAB code to obtain time histories of cable motion, 
aerodynamic forces, additional horizontal tension acting in the 
cable during vibration and torque due to spring back. For this 
purpose, a 10-cm-long piece of iced cable at mid-span was 

considered, the input data being determined at the two end 
points of the piece. The finite element model was constructed 
using the ABAQUS commercial software for calculating the 
stresses in the atmospheric ice accreted on the cable. The 
model revealed that the higher stresses occurred along the 
vertical diameter of the ice when the mid-point of the cable 
reached the highest or lowest positions of its trajectory. As 
these stresses exceeded the bending strength of ice in the 
particular case at hand, the model predicted ice failure. Using 
the method and model proposed in this investigation, the level 
of stress in atmospheric ice may be estimated for any other 
loading condition.  

 

This w
NSERC/H
Atmospher
and the C
Network A
Québec à 
CIGELE p
France, A
FUQAC) w

[1] A
In
D

[2] Y
de
Jo

[3] Ir
fr
29

[4] Lu
sa
Vi

[5] K
m
Ph
be

[6] O
M
Tr
El

-5

-3

-1

1

3

5

0 0.5 1 1.5 2 2.5 3
Time (s)

N
or

m
al

 S
tr

es
s 

(M
Pa

)

E 216 E 226 E 235 E 246

-8

-6

-4

-2

0

2

4

6

0 0.5 1 1.5 2 2.5 3
Time (s)

N
or

m
al

 S
tr

es
s 

(M
Pa

)

E 214 E 237 E 244 E 228

Fig 11. Normal stresses in 4 elements in the external layer of 
accreted ice. 

Fig 12. Normal stresses in 4 elements in the internal layer of 
accreted ice. 
 
Fig14. Stress distribution along vertical diameter of 
cable-ice composition. 
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